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SHORT NOTES 

Progressive refolding in ductile shear zones 
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Abs t r ac t - -The  foliation formed in a ductile shear zone can become folded by continuing shear  in the zone without 
the foliation having to enter  the shor tening sector of the flow field. If the foliation lies parallel to the shear  plane,  
infinitesimal variations in the rate of  shear  strain cause compensat ing rotations that may amplify into folds. Small 
increases in the rate cause backward rotations (counter  to the sense of shear): these do not  amplify. Small 
decreases cause forward rotations that  do amplify. 

A COMMON feature in ductile shear zones are folds that 
deform the principal foliation formed in the zone, but 
which appear themselves to be related to continued 
deformation along the zone. In some cases the folds 
have been refolded in turn, one or more times. The 
phenomenon is most clear-cut where the shear zone is 
bounded by completely undeformed rocks, so that the 
folding is clearly restricted to and related to the shear 
zones, rather than being caused by a later unrelated 
deformation. Folds of this type have several distinctive 
characteristics. 

(1) The folds are restricted to the shear zone. They die 
out along their axial surfaces in both directions, defining 
a lens-shaped folded domain in profile. 

(2) The axial-plane foliation in the fold hinges is 
microstructurally similar or identical to the folded folia- 
tion (Carreras et al. 1977, Bell 1978). In the Cabo de 
Creus example, described by Carreras et al. (1977), a 
crystallographic preferred orientation pattern related to 
the main mylonitic foliation is also rotated around the 
folds, but in the tighter folds a similar fabric is developed 
with a symmetrical relation to the axial plane. 

(3) The folds vary continuously in style from open and 
nearly concentric, to virtually isoclinal 'similar' folds. 
The open folds have axial planes at fairly high angles to 
the plane of the shear zone; the tighter and more flat- 
tened folds are inclined at lower angles (Carreras et al. 

1977). This suggests that the folds may have nucleated 
continuously or episodically during deformation, and 
became progressively tightened, flattened, and rotated 
towards the shear plane. Fold hinges also appear to have 
been progressively rotated towards the bulk elongation 
direction, and in some cases the folds are deformed into 
sheaths (Bell 1978, Quinquis et al. 1978). 

It is not immediately clear why these folds form. 
Theories of buckle-folding of layers of contrasting vis- 
cosity require the layering to lie in the shortening sector 

of the instantaneous flow field [note that 'inverse folds', 
initiated when the layering lies in the extensional sector, 
do not amplify significantly (Smith 1977)]. But if the 
foliation forms parallel or close to the principal plane of 
finite strain, we should expect it always to lie in the 
extensional sector. In an 'ideal' shear zone, parallel 
sided and effectively of infinite extent (Ramsay & 
Graham 1970), deforming by progressive simple shear, 
the principal plane of finite strain should rotate towards 
the plane of shear (the plane of zero finite and instan- 
taneous elongation), but never reach it. To get into the 
instantaneous shortening sector, the foliation would 
have to pass through the shear plane. 

The problem may, of course, be an artefact of the 
assumptions in the previous paragraph. The idea that 
the foliation in shear zones represents a principal plane 
of finite strain stems mainly from the observation that it 
is defined in part by deformed grains that were initially 
approximately equant. It clearly does not apply if there 
was a pre-existing fabric in the rocks, or if the foliation 
becomes active during the deformation. The latter may 
happen fairly rapidly: the foliation (S) is a plane of 
anisotropy, and deformation by slip along S becomes 
progressively easier as it develops and rotates towards 
the shear plane. In the extreme case, the deformation, 
while it may remain bulk simple shear, becomes divided 
into three components: slip along S, coaxial extension 
along S, and rotation (spin) of the system (Lister & 
Williams 1979, 1983). In this situation, S will rotate 
towards the shear plane more rapidly than the principal 
plane of finite strain, but it should nevertheless not pass 
through the shear plane. 

We could also argue that the deformation in shear 
zones locally departs significantly from progressive sim- 
ple shear, so that the foliation temporarily finds itself in 
the instantaneous shortening sector. Bell (1978) suggests 
that the folds in the Woodroffe mylonite were initiated 
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by flow heterogeneity around 'islands' of undeformed 
rock in the mylonite zone. This is also the obvious 
explanation for the folds commonly developed around 
porphyroclasts in shear zones: the porphyroclast rotates 
bodily at up to twice the vorticity rate; the foliation near 
it is rotated also, and comes to lie in the shortening 
sector. A similar (but distinct) concept has been 
developed by Hudleston (1977), to explain recumbent 
similar folds formed in the zone of shear at the base of 
glaciers and ice sheets. Irregularities in the bed of the 
glacier cause local rotations of the foliation through the 
shear plane; and subsequent heterogenous simple shear 
then causes fold development.  In Hudleston's concept 
the foliation is not an active surface in the deformation. 
Related models of passive amplification of folds initiated 
by instabilities in simple-shear flow have been developed 
by Cobbold & Quinquis (1980). 

The abundance of folds in some shear zones, and 
their common lack of association with porphyroclasts, 
'islands' or marginal irregularities on a scale comparable 
with that of the folds, suggests that they may not depend 
for their origin on large-scale inhomogeneities. Carreras 
et al. (1977) suggest that the folds may initiate as 'inter- 
nal' buckling instabilities in the foliation. Internal buck- 
les (Blot 1965, Cobbold et al. 1971) are controlled by the 
presence of a mechanical anisotropy, and do not depend 
on a spatial variation in material properties. They are 
caused by the change in effective rheology of an anisot- 
ropic material as it rotates with respect to the flow field 
(Cobbold 1976). A rotated domain therefore deforms at 
rates different from those in the surrounding material, 
and this may cause it to amplify into a fold. Internal 
buckles will not produce tight folds, however, if the 
foliation lies in the extensional field. The only structures 
that are likely to form in this situation are foliation 
boudinage, and very open folds and crenulations 
associated with shear bands (Cobbold et al. 1971, Pla t t& 
Vissers 1980). 

A possibility remains that internal buckling may occur 
if the strain is so high that the foliation has been rotated 
until it is effectively parallel to the shear plane. In this 
position it undergoes neither extension nor shortening. 
This is not an adequate condition for 'ordinary'  buckle- 
folding of layers with contrasting mechanical properties, 
but as discussed below, a type of internal-buckling insta- 
bility can arise in this situation and amplify into folds. 
Biot's (1965) theory was developed for infinitesimal 
deformation in elastic materials. He  suggested that it 
could be extended,  by analogy, to viscous and plastic 
behaviour,  but the significance of concepts such as initial 
stress and elastic strain energy in a viscous situation is 
obscure. A much simpler kinematic analysis of a simple 
anisotropic viscous material is therefore adopted here. 

Kinematic" analysis 

I make the following assumptions, and the analysis is, 
of course, limited by their validity. 

(1) The shear zone is planar, parallel sided, and of 
effectively infinite extent,  so that it conforms to the 

criteria established by Ramsay & Graham (1970) for a 
zone of simple shear. 

(2) The flow field is progressive simple shear at the 
scale of discussion: grain scale heterogeneity is ignored. 

(3) The material in the zone is mechanically homo- 
geneous at the scale of discussion; but is anisotropic 
with, in two dimensions, reflection lines of symmetry 
normal and parallel to the foliation (S). 

(4) The material obeys a linear viscous flow law such 
that 

Tq = CO, ~D,~, 

where the Tq are deviatoric stresses, D~s are strain rates, 
and Cqr~ the 36 viscous moduli (tensor notation and 
symbol conventions after Malvern 1969). The viscous 
moduli for a two-dimensional incompressible aniso- 
tropic material can be reduced to two, if the plane of 
anisotropy is used as a reference frame. These are a 
compressive modulus N and a shear modulus Q, both 
measured parallel to S (Cobbold 1976). 

If the principal rate of elongation D~ is oriented at a to 
S, then the principal tensional deviatoric stress T1 will be 
oriented at 0 to S, such that 

tan 20 = Q / N  tan 2a 

(Cobbold 1976). In the case under discussion, of simple 
shear parallel to S, D 1 must be at 45 ° to S, and TI is 
parallel to D~. (The material therefore satisfies one of 
Biot's orthotropy conditions, but this is only true if S is 
parallel to the plane of simple shear.) 

Consider now a localised perturbation in the flow 
field. The simplest sort of perturbation in this situation is 
an infinitesimal variation in the rate of shear strain. For 
example, such variations are very likely as a result of 
grain-scale inhomogeneities. But if we postulate that the 
perturbation is infinitesimal, we need not concern our- 
selves with its cause: we need only consider whether it 
will amplify. We consider a volume that completely 
encloses the perturbation, and treat it as an element in 
the deformation field. This element is continuous with 
its surroundings, and must therefore obey the flow com- 
patibility relations (Platt & Vissers 1980). Taking 
Cartesian coordinates x l ,  x2, with xt parallel to S, the 
flow field is described by the velocity gradient matrix L 

OVi  __ 

where F is the rate of shear along S. L can be divided into 
a strain rate tensor D, comprising rates of elongation and 
shear-strain, and a vorticity tensor W, which superim- 
poses angular velocities on the components of D. For our 
purposes, the vorticity can be expressed as a single 
angular velocity vector w about the x3 axis. w can be 
expressed in terms of the components of L (Platt & 
Vissers 1980) such that 

w = ½(Ov, Ov2"~ 
Ox2 Oxl] " (2) \ 
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Therefore  f r o m ( l )  

F rom(2)  

But f r o m ( l ) ,  

therefore 

w = ½r. (3) 

- ½ (4) 

Ov~ _ o v ~  _ O, (5) 
O X  1 0 X  2 

0 w  
- 0 .  ( 6 )  

0x l  

The vorticity must therefore remain constant along S. 
This means that to maintain compatibility, the vorticity 
of the perturbation as a whole (w p) must equal the 
vorticity outside it (w e) along the foliation direction. 
Within the perturbation,  w p may be partit ioned into 
vortical (w pv) and spin (w pS) components (Platt & Vis- 
sers 1980, Means e t  a l .  1981) such that 

w p = w p v + w  p s = w  e. (7) 

The vortical component  expresses angular velocities 
relative to the principal axes of the strain-rate tensor, D. 
The spin component  is the angular velocity of the princi- 
pal axes of D relative to the reference frame. If the 
perturbation consists of a small change in the rate of 
shear strain, AF, then the vortical component  w pv will 
change by ½AF, and from (2), the spin component  will 
have to change by -½AF to compensate.  This means that 
the perturbation,  together with the included foliation, 
will rotate in the opposite sense to the local change in F. 
The effect of this is illustrated in Fig. 1, which shows that 
a domain where F increases will rotate backwards 
(against the sense of shear), whereas a domain where F 
decreases will rotate forwards. Rotation of S can there- 
fore arise from small variations in F. 

The next question is whether these perturbations will 
amplify. As shown above, T1 is at 45 ° to S, so the 
resolved shear stress on S is maximal. Any rotated 
domain will therefore experience a lower resolved shear 
stress along the local S than elsewhere (Fig. 2). This will 
cause the local value of F to decrease, so that the 
domain, whatever its initial sense of rotation, will tend 
to rotate forwards. Forward-rotating zones will there- 
fore amplify, whereas backward-rotating zones will dis- 
appear. The forward-rotating zones could amplify inde- 
finitely, and develop into the type of folds found in 
mylonite zones. Other compatibility constraints will 
arise during amplification, but their solution depends on 
the degree of anisotropy, and whether volume is con- 
served during deformation. 

It is worth noting that the process of geometric soften- 
ing or rotation-softening (a decrease in strength caused 
by rotation of a plane of anisotropy in a stress field), 
which has been suggested as a possible cause of strain 
localization, is not in itself a sufficient condition for the 
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Fig. 1. Diagram to show how small variations in the rate of shear  strain, 
F, in a shear zone lead to rotations of a plane of anisotropy S oriented 
parallel to the shear plane. Top: two perturbat ions,  one positive and 
one negative, in the rate of  shear  strain. The vorticity of the flow, 
w e = ½F. The vortical component ,  w pv, of  the vorticity in the perturba- 
tion varies with &F, and the spin component ,  w P~, varies in the opposite 
sense to compensate .  This causes the perturbat ions to rotate as a whole 

(bottom).  
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Fig. 2. Diagram to show how the ambient  stress field in a shear  zone 
controls the amplification of a rotational perturbation.  The principal 
tensional deviatoric stress T~ is oriented at 45 ° to S. The resolved shear 
stress, ~', on S is therefore diminished by Ar on both forward- and 
backward-rotating domains.  This causes similar variations in F, wVL 
and w pS in both types of perturbat ion,  leading to the amplification of 
forward-rotating domains  and the suppression of backward-rotating 

domains.  

amplification of a perturbation. Both forward- and back- 
ward-rotating zones described above are zones of rota- 
tion hardening: one amplifies, the other disappears. 
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Note added in p roo f  

Dr. M. Casey has pointed out that the compatibility constraint in 
equation (6) also applies to all the components of the strain-rate tensor 
D, none of which may vary along x~. This means that any perturbation 
in F such as ! propose must be surrounded by a region of compensating 
deformation, such that there exists a closed volume the bulk deforma- 
tion of which conforms to equation (1). These compensating deforma- 
tions could involve volume changes, strain-rates and rotations. A 
couplet of adjacent forward and backward rotating zones could partly 
compensate for each other. As mentioned in the text, these additional 
compatibility constrair, ts become significant as the amplitude of the 
perturbation increases. 


